Pendekatan Machine Learning untuk Analisis dan Visualisasi Data Jembatan Timbang

Authors

  • Siti Shofiah Politeknik Keselamatan Transportasi Jalan
  • Faris Humami Politeknik Keselamatan Transportasi Jalan
  • M. Iman Nur Hakim Politeknik Keselamatan Transportasi Jalan
  • Azimatun Lissyifa Politeknik Keselamatan Transportasi Jalan
  • Agus Siswono Politeknik Keselamatan Transportasi Jalan

DOI:

https://doi.org/10.55606/jsr.v2i1.2666

Keywords:

Vehicle Weighing, Machine Learning, Weighbridge Data Analysis

Abstract

In this research, a machine learning approach, especially a decision tree model, is implemented to improve the analysis and visualization of weighbridge data in Indonesia. The evaluation results show that the decision tree model provides better insight in predicting the carrying capacity, dimensions and loading procedures of vehicles. The advantage of this model lies in its combination of low Mean Squared Error (MSE) and high R-squared, indicating its effectiveness in capturing data variance and providing accurate predictions. The use of decision tree models can be a valuable tool in improving the visualization of bridge weighing data, allowing users to gain additional insights and understand the complex dynamics within the data. In addition, the model's adaptability to various types of data makes it a versatile analysis tool. The positive implications of using this model open up opportunities to understand more deeply the logic of predictions and make more informed decisions. As a suggestion, increasing the number and quality of weighing equipment, wider application of information and communication technology, human resource training, and cross-sector collaboration can further strengthen weighbridge management in Indonesia.

References

11._Sk_5370_Tahun_2017-Kompetensi_Petugas_Uppkb_. (N.D.).
Aulia Brahmantio Diaz. (2022). No Title. Apa Itu ETL Dan Mengapa Seorang Data Engineer Perlu Menggunakan ETL? https://www.xsis.co.id/apa-itu-etl/#:~:text=etl merupakan kepanjangan dari extract,warehouse atau target sistem lainnya.
Buaton, R. (2021). Model Optimization IN The Discovery OF The Rule Time Series Data Mining [Universitas Sumatera Utara]. http://repositori.usu.ac.id/handle/123456789/39568
Jollyta, D. (2022). Optimalisasi Cluster Berdasarkan Pendekatan Optimisasi Kombinatorial Untuk Algoritma Penentuaan Data Dalam Cluster [Universitas Sumatera Utara]. https://repositori.usu.ac.id/handle/123456789/47654
Karunia, R. L., Solihati, K. D., & Wati, N. K. (2022). Implementation Of Good Governance Principles In The Land Transportation Management Center. Kne Social Sciences, 2022, 1253–1268. https://doi.org/10.18502/kss.v7i9.11014
Pemerintah Republik Indonesia. (2019). Peraturan Presiden Republik Indonesia No 39 Tahun 2019 Tentang Satu Data Indonesia. Peraturan Presiden, 004185, 1–35. https://peraturan.bpk.go.id/home/details/108813/perpres-no-39-tahun-2019
Rahmi Yati. (2022, February 3). MTI:Kapasitas Jembatan Timbang Di Jawa Dan Sumatera Masih Kurang. Bisnis.Com. https://economy.business.com/read/20220203/98/1496180/mti-kapasitas-bridge-tanding-di-jawa-dan-sumatra-masih-kurang.%0a
Rustam, S., & Annur, H. (2019). Akademik Data Mining (Adm) K-Means Dan K-Means K-Nn Untuk Mengelompokan Kelas Mata Kuliah Kosentrasi Mahasiswa Semester Akhir. Ilkom Jurnal Ilmiah, 11(3), 260–268. https://doi.org/10.33096/ilkom.v11i3.487.260-268
Wahyono, W. (2020). Peningkatan Kecepatan Algoritma K-Nn Untuk Sistem Pengklasifikasian Kendaraan Bermotor. Techno.Com, 19(2), 190–196. https://doi.org/10.33633/tc.v19i2.3458
Wasiso, I., & Kurniawan, M. P. (2021). Pengembangan Integrasi Sistem Unit Pelaksana Penimbangan, Pengujian Kendaraan Bermotor Dan Terminal Pada Tunggal Data Kendaraan Development Of Integrated Weighing Unit Systems, Motor Vehicle Testing And Terminals On Single Vehicle Data. Research : Journal OF Computer, 4(1), 37–44.

Downloads

Published

2024-01-11

How to Cite

Siti Shofiah, Faris Humami, M. Iman Nur Hakim, Azimatun Lissyifa, & Agus Siswono. (2024). Pendekatan Machine Learning untuk Analisis dan Visualisasi Data Jembatan Timbang. Journal of Student Research, 2(1), 381–387. https://doi.org/10.55606/jsr.v2i1.2666