PENERAPAN MODEL INFORMATION RETRIEVAL UNTUK PENCARIAN KONTEN PADA PERPUSTAKAAN DIGITAL

Authors

  • Aang Alim Murtopo STMIK Tegal
  • Didi Haryadi STMIK Tegal
  • Nurul Fadilah STMIK Tegal

DOI:

https://doi.org/10.55606/jupti.v1i3.514

Keywords:

perpustakaan digital, information retrieval, algoritma n-gram, consine similarity

Abstract

The growth of the library will not be separated from the progress of science and information technology. In this case the library is closely related to information technology and science. Each helping the other. Libraries have a great responsibility to improve the reading habits of their users. Therefore, this digital library has a very positive influence on users' reading motivation. A digital library is a library that uses a collection of books that are in digital format and can be accessed via computers and smartphones. The digital library has implemented a repository. Repository is a container for storing various documents or information. The use of a repository greatly facilitates digital library users in finding the information they need. In this study, the method used to search for content information uses (information retrieval), in processing the search using the N-Gram Algorithm and Cosine Similarity to measure the similarity between the documents sought. Using the above method can speed up the process of searching for content in digital libraries and to find the relevance between search results and keywords.

References

[1] A. M. Aminullah et al., “Meningkatkan Kesadaran Generasi Muda Terhadap Pengembangan Koleksi Digital Dalam Membangun Perpustakaan Digital di Perpustakaan UIN Alauddin Makassar,” Juournal Educ. Psychol. Couns., vol. 3, no. 1, pp. 88–94, 2021.
[2] J. Setiyono and M. M, “Persepsi Pemustaka Terhadap Pengembangan Institutional Repository Di Perpustakaan Isi Surakarta,” Publ. Libr. Inf. Sci., vol. 3, no. 1, p. 20, 2019, doi: 10.24269/pls.v3i1.1576.
[3] E. Fitriani, R. E. Indrajit, and R. Aryanti, “Penerapan Model Information Retrieval Untuk Pencarian Konten Pada Perpustakaan Digital,” J. Perspekt., vol. 15, no. 2, pp. 170–176, 2017.
[4] I. G. Anugrah, “Penerapan Metode N-Gram dan Cosine Similarity Dalam Pencarian Pada Repositori Artikel Jurnal Publikasi,” Build. Informatics, Technol. Sci., vol. 3, no. 3, pp. 275–284, 2021, doi: 10.47065/bits.v3i3.1058.
[5] Z. Pratama, E. Utami, and M. R. Arief, “Analisa Perbandingan Jenis N-GRAM Dalam Penentuan Similarity Pada Deteksi Plagiat,” Creat. Inf. Technol. J., vol. 4, no. 4, p. 254, 2019, doi: 10.24076/citec.2017v4i4.118.
[6] A. S. Wahyuni and A. O. . Dewi, “Persepsi Pemustaka Terhadap Desain Antarmuka Pengguna (User Interface) Aplikasi Perpustakaan Digital ïJogja"Berbasis Android,” J. Ilmu Perpust., vol. VII, no. 1, pp. 21–30, 2018, [Online]. Available: https://ejournal3.undip.ac.id/index.php/jip/article/view/22810.
[7] A. I. Fahma, I. Cholissodin, and R. S. Perdana, “Identifikasi Kesalahan Penulisan Kata (Typographical Error) Pada Dokumen Berbahasa Indonesia Menggunakan Metode N-Gram Dan Levenshtein Distance,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 1, pp. 53–62, 2018.
[8] J. Pardede, M. Gustiana Husada, and R. Riansyah, “Implementasi Dan Perbandingan Metode Okapi BM25 Dan PLSA Pada Aplikasi Information Retrieval,” Itenas Repos., pp. 1–10, 2018.
[9] A. A. Muin and F. Fitriani, “Implementasi Sistem Informasi Pengelolaan Data Perpustakaan Berbasis Web (Studi Kasus: Perpustakaan Daerah Kabupaten Sinjai),” J. INSYPRO (Information Syst. Process., vol. 5, no. 2, pp. 1–8, 2021, doi: 10.24252/insypro.v5i2.19398.
[10] A. Nurfalah and A. A. Suryani, “Analisis Sentimen Berbahasa Indonesia dengan Pendekatan Lexicon-Based pada Media Sosial,” J. Masy. Inform. Indones., vol. 2, no. 1, pp. 1–8, 2017.
[11] R. Sadida, M. R. Azkia, B. P. Candra, N. Rezeki, and M. O. C. Rendy, “Perancangan Sistem Analisis Sentimen Masyarakat pada Sosial Media dan Portal Berita,” Semin. Nas. Teknol. Inf. dan Multimed. 2017, no. 2015, pp. 2–7, 2017.
[12] T. Zebua and N. Silalahi, “Aplikasi Saran Buku Bacaan Bagi Pengunjung Perpustakaan AMIK STIEKOM Sumatera Utara Berdasarkan Algoritma Brute Force,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 3, no. 3, p. 66, 2018, doi: 10.30645/jurasik.v3i0.67.
[13] M. Z. Naf’an, A. Burhanuddin, and A. Riyani, “Penerapan Cosine Similarity dan Pembobotan TF-IDF untuk Mendeteksi Kemiripan Dokumen,” J. Linguist. Komputasional, vol. 2, no. 1, pp. 23–27, 2019.
[14] D. S. Indraloka and B. Santosa, “Penerapan Text Mining untuk Melakukan Clustering Data Tweet Shopee Indonesia,” J. Sains dan Seni ITS, vol. 6, no. 2, pp. 6–11, 2017, doi: 10.12962/j23373520.v6i2.24419.
[15] M. S. Anwar, I. M. I. Subroto, and S. Mulyono, “Sistem Pencarian E-Journal Menggunakan Metode Stopword Removal Dan Stemming,” Pros. Konf. Ilm. Mhs. UNISSULA 2, pp. 58–70, 2019, [Online]. Available: http://lppm-unissula.com/jurnal.unissula.ac.id/index.php/kimueng/article/viewFile/8420/3887.
[16] P. F. Ariyani, A. Rahmala, and N. Juliasari, “Implementasi Metode Stemming Tala Dan Fungsi Jaccard Pada Aplikasi Katalog Perpustakaan,” Semin. Nas. Inov. dan Apl. Teknol. di Ind. 2019, pp. 128–133, 2019.
[17] I. Made Suwija Putra, N. Putu Ayu Widiari, and I. Wayan Gunaya, “Implementasi Generalized Vector Space Model (GVSM) dalam Pencarian Buku di Perpustakaan,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), p. 86, 2019, doi: 10.24843/jim.2019.v07.i01.p10.
[18] S. Fauziah, D. N. Sulistyowati, and T. Asra, “Optimasi Algoritma Vector Space Model Dengan Algoritma K-Nearest Neighbour Pada Pencarian Judul Artikel Jurnal,” J. Pilar Nusa Mandiri, vol. 15, no. 1, pp. 21–26, 2019, doi: 10.33480/pilar.v15i1.27.
[19] D. A. N. Lempel, Z. I. V Welch, D. A. N. Lempel, Z. I. V Welch, and L. Z. W. Yang, “METODE N-GRAM UNTUK ALGORITMA KOMPRES HUFFMAN,” no. 1102090.

Downloads

Published

2022-09-19

How to Cite

Aang Alim Murtopo, Haryadi, D., & Nurul Fadilah. (2022). PENERAPAN MODEL INFORMATION RETRIEVAL UNTUK PENCARIAN KONTEN PADA PERPUSTAKAAN DIGITAL. Jurnal Publikasi Teknik Informatika, 1(3), 62–70. https://doi.org/10.55606/jupti.v1i3.514