Enhancing Special Needs Identification for Children: A Comparative Study on Classification Methods Using ID3 Algorithm and Alternative Approaches

Authors

  • Fathul Hafidh Islamic University of Kalimantan Muhammad Arsyad Al Banjari Banjarmasin

DOI:

https://doi.org/10.55606/jeei.v3i2.1468

Keywords:

Special Needs Children, Identification, Classification Methods, ID3, Naïve Bayes, Random Forest, k-NN, Gradient Boosting

Abstract

This research aims to compare the performance of classification methods in identifying special needs in children. The dataset used consists of identifications of various types of special needs, such as ADHD, autism, mild cerebral palsy, mild intellectual disability, moderate intellectual disability, and hearing impairment. The methods compared include ID3 (previous study), Naive Bayes, Random Forest, k-NN, and Gradient Boosting. The comparison results show that ID3 achieves an accuracy rate of 91.81%. The new alternative methods show better performance, with Naive Bayes achieving an accuracy of 95.28%, Random Forest 95.14%, k-NN 95.28%, and Gradient Boosting 83.47%. Although Random Forest does not outperform Naive Bayes and k-NN, it has the advantage of forming decision trees that align with symptom attributes and predict disability labels. However, in the implementation of the Gradient Boosting algorithm, there is a low model probability, especially in identifying ADHD. The conclusion of this research provides insights for researchers in selecting appropriate classification methods for identifying special needs in children, considering accuracy, efficiency, and handling imbalanced data.

 

 

 

References

Agustiani, S., Arifin, Y. T., Junaidi, A., Wildah, S. K., & Mustopa, A. (2022). Klasifikasi Penyakit Daun Padi menggunakan Random Forest dan Color Histogram. Jurnal Komputasi, 10(1), 65-74.

Anam, C., & Rusdiana, N. (2020). Analisis Pemeringkatan Kualitas Klasifier Pada Dataset Tidak Seimbang. JIMP (Jurnal Informatika Merdeka Pasuruan), 5(1), 38-44.

Bhatt, H., Mehta, S., & D'mello, L. R. (2015). Use of ID3 decision tree algorithm for placement prediction. Int J Comput Sci Inform Technology, 6(5), 4785-4789.

Federici, S., Bracalenti, M., Meloni, F., & Luciano, J. V. (2017, Nov 6). World Health Organization disability assessment schedule 2.0: An international systematic review. Disability and rehabilitation, pp. 2347-2380.

Hafidh, F. K. (2021). Identifikasi ketunaan anak berkebutuhan khusus dengan algoritma iterative dichotomiser 3 (id3). Jurnal Buana Informatika, 12(2), 1278-87.

Haryono, H., Syaifudin, A., & Widiastuti, S. (2015). Evaluasi pendidikan inklusif bagi anak berkebutuhan khusus (ABK) di Provinsi Jawa Tengah. Jurnal Penelitian Pendidikan, 32(2), 119-126.

Ismanto, E., & Novalia, M. (2021). Komparasi Kinerja Algoritma C4. 5, Random Forest, dan Gradient Boosting untuk Klasifikasi Komoditas. Techno. Com, 20(3), 400-410.

Jiang, L., Zhang, L., Li, C., & Wu, J. (2018). A correlation-based feature weighting filter for naive bayes. IEEE transactions on knowledge and data engineering, 31(2), 201-213.

Kurnia, F., Kurniawan, J., Fahmi, I., & Monalisa, S. (2019). Klasifikasi Keluarga Miskin Menggunakan Metode K-Nearest Neighbor Berbasis Euclidean Distance. In Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI), 11, 230-239.

Kurniawan, M. Y., & Rosadi, M. E. (2017). Optimasi Decision Tree Menggunakan Particle Swarm Optimization Pada Data Siswa Putus Sekolah. Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM), 2(1), 7-14.

Mursanib, M. (2014). Meningkatkan keterampilan Identifikasi Anak Berkebutuhan Khusus Bagi Mahasiswa Prodi. PG/PAUD FKIP Universitas Tadulako. Tri Sentra Jurnal Ilmu Pendidikan, 2(4), 20-30.

Nalatissifa, H., Gata, W., Diantika, S., & Nisa, K. (2021). Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja. Jurnal Informatika Universitas Pamulang, 5(4), 578-584.

Nurfadhillah, S. (2021). Pendidikan Inklusi Pedoman bagi Penyelenggaraan Pendidikan Anak Berkebutuhan Khusus. Sukabumi: CV Jejak (Jejak Publisher).

Nuryati, N. (2022). Pendidikan Bagi Anak Berkebutuhan Khusus. Yogyakarta: Unisa Press.

Sethu, Navya, & Vyas, R. (2020). Overview of machine learning methods in ADHD prediction. Advances in Bioengineering., (pp. 51-71). Singapore.

Vishal, V., Singh, A., J. Y., Shyry, S., & Jabez, J. (2022, April). A Comparative Analysis of Prediction of Autism Spectrum Disorder (ASD) using Machine Learning. In 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), (pp. 1355-1358). IEEE.

Wahid, F. (2004). Metodologi penelitian sistem informasi: sebuah Figurean umum. Media Informatika, 2(1), 69-81.

Downloads

Published

2023-05-28

How to Cite

Fathul Hafidh. (2023). Enhancing Special Needs Identification for Children: A Comparative Study on Classification Methods Using ID3 Algorithm and Alternative Approaches. Journal of Engineering, Electrical and Informatics, 3(2), 01–16. https://doi.org/10.55606/jeei.v3i2.1468