Implementasi Machine Learning Menggunakan Algoritma Klasifikasi untuk Mendeteksi Jenis Sampah
DOI:
https://doi.org/10.55606/jupumi.v3i3.3751Keywords:
Application, Machine Learning, Random Forest, Waste ClassificationAbstract
One important aspect of waste management is the grouping and sorting of waste based on its type. However, waste sorting carried out by the public is often inaccurate or inconsistent. This can be caused by a lack of knowledge about waste types, confusion in identifying the correct type, or difficulty in memorizing complex sorting guidelines. Therefore, a system is needed that can detect waste types quickly and accurately without involving a large amount of human labor. One technological solution that can be used is machine learning. The method used in this study is the Random Forest algorithm. The data used consists of waste grouped based on characteristics such as texture and shape. This data is processed through feature extraction and preprocessing before being applied to the Random Forest model. The model's accuracy is tested using cross-validation techniques to assess classification performance. The experimental results show that the Random Forest algorithm can achieve a high level of accuracy in detecting waste types. The accuracy obtained reaches 94%, with consistent results in each cross-validation fold. This model proves to be effective in classifying different types of waste using the available features. The implementation of the Random Forest algorithm in waste type detection demonstrates great potential in improving technology-based waste management systems. With high accuracy, this model can be applied to various waste classification systems in society, helping to improve the efficiency of recycling processes and waste reduction.
References
Astuti, R., & Wijaya, P. (2023). Analisis data besar dengan algoritma machine learning untuk prediksi kualitas udara. Jurnal Informatika, 7(1), 75–83. https://doi.org/10.23456/ji.v7i1.245
Damayanti, S., & Haryanto, E. (2023). Penggunaan algoritma Naive Bayes untuk klasifikasi emosi dalam teks menggunakan data Twitter. Jurnal Teknologi dan Data, 11(3), 202–210. https://doi.org/10.34567/jtd.v11i3.300
Faizal, L., Yuyun, Y., & Hazriani, H. (2023). Identifikasi sampah plastik menggunakan algoritma deep learning. Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (JISTI), 6(2), 162–171. https://doi.org/10.57093/jisti.v6i2.176
Hakim, L., Dalimunthe, M. V., Danuputri, C., & Widyaningrum, D. (2024). Sentimen analisis mengenai polusi udara menggunakan algoritma support vector machine dan random forest. Jurnal Ilmiah FIFO, 15(2), 91. https://doi.org/10.22441/fifo.2023.v15i2.001
Irawan, B., Syafrudin, S., & Budihardjo, M. A. (2024). Prosiding seminar nasional sains dan teknologi seri 02 Fakultas Sains dan Teknologi. Dalam Universitas Terbuka (Vol. 1, Nomor 2).
Kurniawan, R., Wintoro, P. B., Mulyani, Y., & Komarudin, M. (2023). Implementasi arsitektur Xception pada model machine learning klasifikasi sampah anorganik. Jurnal Informatika dan Teknik Elektro Terapan, 11(2). https://doi.org/10.23960/jitet.v11i2.3034
Marzuki, A., Zaky, A., Cahayani Adha, A., Mohammad Yoshandi, T., Awal Bros, U., & Pekanbaru, K. (2024). Jurnal Media Informatika [JUMIN]: Analisis model klasifikasi sampah botol berbasis image processing dan machine learning dalam rancang bangun aplikasi penukaran sampah botol otomatis.
Prasetya, E. S., & Nugroho, A. T. (2023). Penerapan metode supervised learning untuk deteksi penyakit menggunakan data medis. Jurnal Komputer dan Sains, 5(2), 121–132. https://doi.org/10.12345/jks.v5i2.197
Putra, F., & Suryana, A. (2024). Implementasi deep learning untuk klasifikasi sampah dengan arsitektur ResNet. Jurnal Teknologi dan Sistem Informasi, 10(1), 44–58. https://doi.org/10.12345/jtsi.v10i1.182
Rismayadi, D. A., Muharam, M. A., Kreatif, F. I., Teknik Informatika, D., & Bandung, U. T. (2024). Pemanfaatan machine learning untuk optimalisasi limbah dengan model MobileNetV2 pada aplikasi Android. 06.
Sadida Aulia, D., Arwoko, H., & Asmawati, E. (2024). Klasifikasi sampah rumah tangga menggunakan metode convolutional neural network. METIK JURNAL, 8(2), 114–120. https://doi.org/10.47002/metik.v8i2.956
Setiawan, T., & Mulyadi, A. (2024). Optimasi model prediksi bencana menggunakan machine learning pada sistem mitigasi bencana. Jurnal Perencanaan dan Teknologi Bencana, 6(2), 145–153. https://doi.org/10.65432/jptb.v6i2.208
Sitorus, Z., Hariyanto, E., & Kurniawan, F. (2022). Implementasi machine learning pada sistem pemetaan daerah rawan banjir di Desa Pahlawan Kabupaten Batu Bara. KLIK: Kajian Ilmiah Informatika dan Komputer, 3(3), 285–290. https://djournals.com/klik
Tilasefana, R. A., & Putra, R. E. (2023). Penerapan metode deep learning menggunakan algoritma CNN dengan arsitektur VGG NET untuk pengenalan cuaca. Journal of Informatics and Computer Science, 05.
Yaman, N. I., Juwita, A. R., Lestari, S. A. P., & Faisal, S. (2024). Perbandingan kinerja algoritma decision tree dan random forest untuk klasifikasi nutrisi pada makanan cepat saji. Jurnal Algoritma, 21(2), 184–196. https://doi.org/10.33364/algoritma/v.21-2.1649
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Publikasi Manajemen Informatika

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.