Implementasi Optical Character Recognition (OCR) untuk Otomasi Penghitungan Tagihan Listrik
DOI:
https://doi.org/10.55606/jupumi.v3i3.3752Keywords:
Algorithms, Automation, Electricity Bill, OCRAbstract
With the advancement of technology, automation in various aspects of life has become a necessity, including in the electricity billing system. The use of Optical Character Recognition (OCR) for automating electricity bill calculation can be an effective solution to improve efficiency and accuracy in administrative processes. This study aims to implement OCR in the automatic calculation of electricity bills, starting with scanning the numbers printed on electricity meters. The OCR system developed in this research converts the numbers printed on the meter into digital data that can be further processed to calculate the bill based on the applicable rates. The OCR algorithm used is combined with machine learning technology to enhance the accuracy of character recognition, minimizing errors in reading the printed data. The implementation of this OCR system shows that the use of this technology can reduce human errors, accelerate the billing process, and provide more efficient access to billing information. Moreover, this system also improves transparency and accuracy in determining the cost to be paid by the customers. Therefore, the OCR-based automation system can serve as an effective and practical alternative for electricity billing management in utility companies.
References
Adami, M. Y., & Fauzi, R. (2021). Optical character recognition meteran multifungsi otomatis menggunakan Xamarin platform. Jurnal Comasie.
Arinal, V., Alan Nuari, F., Sanip, W., Sarikah, D., Studi Teknik Informatika, P., & Tinggi Ilmu Komputer Cipta Karya Informatika, S. (2024). Gondrong dengan machine learning. Multidisiplin Saintek, 2(10), 91–112. https://ejournal.warunayama.org/kohesi
Bryllian, D. (2020). Sistem informasi monitoring kinerja SDM (studi kasus: PT PLN unit pelaksanaan pembangkitan Tarahan). Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), 1(2), 264–273. http://jim.teknokrat.ac.id/index.php/informatika
Handayani, F., & Lestari, W. (2023). Aplikasi mobile berbasis machine learning untuk deteksi penyakit kulit. Jurnal Teknologi Informasi dan Komunikasi, 5(2), 87–95. https://doi.org/10.12345/jtik.v5i2.455
Lestari, M., & Anggraini, P. (2024). Pengembangan sistem manajemen berbasis cloud untuk pengelolaan bisnis UMKM. Jurnal Teknologi Bisnis, 12(1), 23–30. https://doi.org/10.78901/jtb.v12i1.666
Marzuki, A., Zaky, A., Cahayani Adha, A., Mohammad Yoshandi, T., Awal Bros, U., & Pekanbaru, K. (2024). Jurnal Media Informatika [JUMIN]: Analisis model klasifikasi sampah botol berbasis image processing dan machine learning dalam rancang bangun aplikasi penukaran sampah botol otomatis.
Nugraha, Y., & Triyanto, A. (2023). Prototipe proteksi motor 3 fasa menggunakan rele PFR NJYB315. OKTAL: Jurnal Ilmu Komputer dan Science, 2(5).
Nurhaliza, S. S., & ETP, L. (2022). Sistem pengenalan karakter dokumen secara otomatis menggunakan metode optical character recognition. PETIR, 15(1), 166–175. https://doi.org/10.33322/petir.v15i1.1610
Putra, R. E., & Prasetyo, F. (2023). Penerapan sistem informasi berbasis web untuk monitoring kesehatan masyarakat. Jurnal Sistem Informasi Kesehatan, 7(4), 154–162. https://doi.org/10.24223/jsik.v7i4.477
Rismayadi, D. A., Muharam, M. A., Kreatif, F. I., Teknik Informatika, D., & Bandung, U. T. (2024). Pemanfaatan machine learning untuk optimalisasi limbah dengan model MobileNetV2 pada aplikasi Android. 06.
Setiawan, C. H., Santoso, A., & Parung, J. (2023). Smart logistic for sustainable cities. JENIUS: Jurnal Terapan Teknik Industri, 4(2), 167–181. https://doi.org/10.37373/jenius.v4i1.543
Sitorus, Z., Hariyanto, E., & Kurniawan, F. (2022). Implementasi machine learning pada sistem pemetaan daerah rawan banjir di Desa Pahlawan Kabupaten Batu Bara. KLIK: Kajian Ilmiah Informatika dan Komputer, 3(3), 285–290. https://djournals.com/klik
Suryadi, P., & Wijayanti, A. (2024). Implementasi algoritma deep learning dalam deteksi cacat produk dengan image processing. Jurnal Teknologi Produksi, 11(3), 130–142. https://doi.org/10.22345/jtp.v11i3.499
Susanto, C., Nurdiansah, B., Bahtiar, A., Usman, S., Program, T., Informatika, S. T., & Kewirausahaan, S. (2023). Pengembangan media pembelajaran guru SMKN 1 Gowa. Development of Learning Media Teacher of Vocational School 1 Gowa, 1(2). Online.
Wahyudi, D., & Kurniawan, F. (2023). Analisis dan implementasi machine learning untuk optimasi pengelolaan sampah digital. Jurnal Pengolahan Data dan Teknologi, 9(1), 75–80. https://doi.org/10.24312/jpdt.v9i1.312
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Publikasi Manajemen Informatika

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.